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Association Rule Discovery

Supermarket shelf management – Market-basket model:
¢ Goal: Identify items that are bought together by sufficiently 

many customers
¢ Approach: Process the sales data collected with barcode 

scanners to find dependencies among items
¢ A classic rule:

l If one buys diaper and milk, then he is likely to buy beer
l Don’t be surprised if you find six-packs next to diapers!

TID Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
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The Market-Basket Model

¢ A large set of items
l e.g., things sold in a 

supermarket

¢ A large set of baskets, 
each is a small subset of items
l e.g., the things one customer buys on one day

¢ A general many-many mapping (association) between 
two kinds of things
l But we ask about connections among “items”, 

not “baskets”
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Association Rules: Approach
¢ Given a set of baskets

¢ Want to discover 
association rules
l People who bought

{x,y,z} tend to buy {v,w}
• Amazon!

¢ 2-step approach:
l 1) Find frequent itemsets
l 2) Generate association rules

2/7/23

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Input:

Output:
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Applications – (1)

¢ Items = products; Baskets = sets of products someone 
bought in one trip to the store

¢ Real market baskets: Chain stores keep TBs of data 
about what customers buy together
l Tells how typical customers navigate stores, lets them position 

tempting items
l Suggests tie-in “tricks”, e.g., run sale on diapers and raise the price 

of beer
l High support needed, or no $$’s

¢ Amazon’s people who bought X also bought Y

2/7/23
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Applications – (2)

¢ Baskets = sentences; Items = documents containing 
those sentences
l Items that appear together too often could represent plagiarism
l Notice items do not have to be “in” baskets

¢ Baskets = patients; Items = drugs & side-effects
l Has been used to detect combinations 

of drugs that result in particular side-effects
l But requires extension: Absence of an item 

needs to be observed as well as presence

2/7/23 7



First: Define
Frequent itemsets
Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs
Apriori algorithm
PCY algorithm + refinements

8
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Frequent Itemsets
¢ Simplest question: Find sets of items that appear 

together “frequently” in baskets

¢ Support for itemset I: Number of baskets containing all 
items in I
l Often expressed as a fraction 

of the total number of baskets

¢ Given a support threshold s, 
then sets of items that appear 
in at least s baskets are called 
frequent itemsets

2/7/23 9

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Support of 
{Beer, Bread} = 2
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Example: Frequent Itemsets

¢ Items = {milk, coke, pepsi, beer, juice}

¢ Minimum support = 3 baskets
B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, b} B4= {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

¢ Frequent itemsets: {m}, {c}, {b}, {j},

2/7/23

, {b,c} , {c,j}.{m,b}
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Association Rules
¢ Association Rules:

If-then rules about the contents of baskets

¢ {i1, i2,…,ik} → j means: “if a basket contains all of i1,…,ik
then it is likely to contain j”

¢ In practice there are many rules, want to find 
significant/interesting ones!

¢ Confidence of this association rule is the probability of j
given I = {i1,…,ik}

2/7/23

conf(I→ j) = support(I ∪ j)
support(I )

= Pr[ j | I ]

*Note: support(I ∪ j) =  # (or %) of baskets contain BOTH I  AND j
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Interesting Association Rules

¢ Not all high-confidence rules are interesting
l The rule X → milk may have high confidence for many itemsets X, 

because milk is just purchased very often (independent of X) and 
the confidence will be high

¢ Interest of an association rule I → j: 
difference between its confidence and the fraction of 
baskets that contain j

l Interesting rules are those with 
high positive or negative interest values

2/7/23

Interest(I→ j) = conf(I→ j)− Pr[ j]
                        = Pr[ j | I ]− Pr[ j]
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Example: Confidence and Interest
B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, b} B4= {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

¢ Association rule: {m, b} →c
l Confidence = 2/4 = 0.5
l Interest = |0.5 – 5/8| = 1/8

• Item c appears in 5/8 of the baskets
• Rule is not very interesting!

2/7/23
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Finding Association Rules
¢ Problem: Find all association rules with support ≥s

and confidence ≥c
l Note: Support of an association rule is the support of the set of 

items on the left side

¢ Hard part: Finding the frequent itemsets!
l If {i1, i2,…, ik} → j has high support and confidence, 

then both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”

2/7/23

)support(
)support()conf(

I
jIjI È

=®



Frequent Itemsets 15

Mining Association Rules
¢ Step 1: Find all frequent itemsets I

l (we will explain this next)

¢ Step 2: Rule generation
l For every subset A of I,  generate a rule A → I \ A

• Since I is frequent, A is also frequent
• Variant 1: Single pass to compute the rule confidence

• conf(A,B→C,D) = supp(A,B,C,D)/supp(A,B)
• Variant 2: 

• Observation**: If A,B,C→D is below confidence, so is A,B→C,D
• Can generate “bigger” rules from smaller ones! 

l Output the rules above the confidence threshold

2/7/23
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Mining Association Rules (cont’d)
¢ Claim: If A,B,C→D is below confidence, so is A,B→C,D

Why ?

Since Supp(ABC) =< Supp(AB)

Therefore:

Conf.(ABC->D) = Supp(ABCD)/ Supp(ABC)   >= Supp(ABCD)/Supp(AB) = Conf(AB->CD)

Thus, 

IF Conf(AB->CD) >= Threshold THEN Conf(ABC->D) also >= threshold ; 

Equivalently,  

IF Conf(ABC->D) < Threshold then Conf(AB->CD) is also below threshold

This means we can first check Conf(AB->CD) if it is above threshold, we can 
simply generate additional rules, e.g. ABC->D, ABD->C.

=> Can generate “bigger” rules from smaller ones! 
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Example
B1 = {m, a, b} B2 = {m, p, j}
B3 = {m, a, b, n} B4= {a, j}
B5 = {m, p, b} B6 = {m,a, b, j}
B7 = {a, b, j} B8 = {b, a}

¢ Min support s=3, confidence c=0.75

¢ 1) Frequent itemsets:
l {b,m} {a,b}  {a,m}  {a,j}  {m,a,b}

¢ 2) Generate rules:
l b→m: c=4/6      b→a: c=5/6        b,a→m: c=3/5
l m→b: c=4/5 …             b,m→a: c=3/4
l b→a,m: c=3/6

2/7/23
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A Compact Way to store/track
Frequent Itemsets

You only need to store the so-called: 

Maximal Frequent itemsets: 

Definition: a Frequent set for which NO immediate superset is 
frequent

Nice Properties: 
All subsets of a Maximal Frequent itemset are frequent 

AND 
Every Frequent itemset must be a subset of some Maximal 

Frequent itemset

=> By enumerating ALL subsets of all Maximal Frequent Itemsets, you 
will NOT miss any Frequent Itemset ! Also, every subset you got is a 
Frequent Itemset !

2/7/23 18
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Example: Maximal Frequent Itemset

Count Maximal (s=3)

A 4 No

B 5 No

C 3 No

AB 4 Yes

AC 2 No

BC 3 Yes

ABC 2 No

2/7/23

Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.



Finding Frequent Itemsets
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Itemsets: Computation Model

¢ Back to finding frequent itemsets

¢ Typically, data is kept in flat files 
rather than in a database system:
l Stored on disk
l Stored basket-by-basket
l Baskets are small but we have 

many baskets and many items
• Expand baskets into pairs, triples, etc. 

as you read baskets
• Use k nested loops to generate all 

sets of size k

2/7/23

Item
Item
Item
Item
Item
Item
Item

Item

Item
Item
Item

Item

Etc.

Items are positive 
integers, and boundaries 
between baskets are –1.

Note: We want to find frequent itemsets. To find 
them, we have to count them. To count them, we 
have to generate them.
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Computation Model
¢ The true cost of mining disk-resident data is usually the 

number of disk I/O’s

¢ In practice, association-rule algorithms read the data in 
passes – all baskets read in turn

¢ We measure the cost by the number of passes an 
algorithm makes over the data

2/7/23
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Main-Memory Bottleneck
¢ For many frequent-itemset algorithms, 

main-memory is the critical resource
l As we read baskets, we need to count 

something, e.g., occurrences of pairs of items
l The number of different things we can count 

is limited by main memory
l Swapping counts in/out is a disaster (why?)

2/7/23
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Finding Frequent Pairs

¢ The hardest problem often turns out to be finding the 
frequent pairs of items {i1, i2}
l Why? Often frequent pairs are common, frequent triples are rare

• Why? Probability of being frequent drops exponentially with size; 
number of sets grows more slowly with size.

¢ Let’s first concentrate on pairs, then extend to larger sets

¢ The approach:
l We always need to generate all the itemsets
l But we would only like to count/keep track of those itemsets that in 

the end turn out to be frequent

2/7/23
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Naïve Algorithm

¢ Naïve approach to finding frequent pairs

¢ Read file once, counting in main memory 
the occurrences of each pair:
l From each basket of n items, generate its 

n(n-1)/2 pairs by two nested loops

¢ Fails if (#items)2 exceeds main memory
l Remember: #items can be 

100K (Wal-Mart) or 10B (Web pages)
• Suppose 105 items, counts are 4-byte integers
• Number of pairs of items: 105(105-1)/2 = 5*109

• Therefore, 2*1010 (20 gigabytes) of memory needed

2/7/23
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Counting Pairs in Memory

Two Approaches:

¢ Approach 1: Count all pairs using a matrix

¢ Approach 2: Keep a table of triples [i, j, c] = “the count of 
the pair of items {i, j} is c.”
l If integers and item ids are 4 bytes, we need approximately 12 

bytes for pairs with count > 0
l Plus some additional overhead for the hashtable

Note:

¢ Approach 1 only requires 4 bytes per pair

¢ Approach 2 uses 12 bytes per pair 
(but only for pairs with count > 0)

2/7/23
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Comparing the 2 Approaches

2/7/23

4 bytes per pair

Triangular Matrix Triples

12 bytes per
occurring pair
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Triangular Matrix Approach

Triangular Matrix Approach
l n = total number items
l Count pair of items {i, j} only if i<j

¢ Keep pair counts in lexicographic order:
l {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

¢ Pair {i, j} is at position (i –1)(n– i/2) + j –1

¢ Total number of pairs n(n –1)/2; total bytes= 2n2

¢ Triangular Matrix requires 4 bytes per pair

¢ Approach 2 uses 12 bytes per pair 
(but only for pairs with count > 0)
l Beats triangular matrix if less than 1/3 of 

possible pairs actually occur
2/7/23
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A-Priori Algorithm – (1)
¢ A two-pass approach called 

a-priori limits the need for 
main memory

¢ Key idea: monotonicity
l If a set of items I appears at 

least s times, so does every subset J of I.

¢ Contrapositive for pairs:
If item i does not appear in s baskets, then no pair 
including i can appear in s baskets

2/7/23
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A-Priori Algorithm – (2)

¢ Pass 1: Read baskets and count in main memory the 
occurrences of each individual item

• Requires only memory proportional to #items, usually enough 
memory even for 1 billon ( = n) different types of items !

¢ Items that appear >= s times are the frequent items
¢ Pass 2: Read baskets again and count in main memory 

only those pairs where both elements are frequent (from 
Pass 1)
l Requires memory proportional to square of frequent items only 

(for counts)
l Plus a list of the frequent items (so you know what must be 

counted)

2/7/23
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Main-Memory: Picture of A-Priori

2/7/23

Item counts

Pass 1 Pass 2

Frequent items
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items (candidate 

pairs)



Frequent Itemsets 33

Detail for A-Priori

¢ You can use the triangular 
matrix method with: 

n = number of frequent items
l May save space compared with 

storing triples

¢ Trick: re-number frequent 
items 1,2,… and keep a table 
relating new numbers to 
original item numbers

2/7/23

Item counts

Pass 1 Pass 2

Counts of pairs 
of frequent 

items

Frequent 
items

Old
item
#s
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Frequent Triples, Etc.
¢ For each k, we construct two sets of

k-tuples (sets of size k):
l Ck = candidate k-tuples = those that might be frequent sets 

(support > s) based on information from the pass for k–1
l Lk = the set of truly frequent k-tuples

2/7/23

C1 L1 C2 L2 C3Filter Filter ConstructConstruct

All
items

Count
the items

All pairs
of items
from L1

Count
the pairs

To be
explained
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Example
¢ Hypothetical steps of the A-Priori algorithm

l C1 = { {b} {c} {j} {m} {n} {p} }
l Count the support of itemsets in C1

l Prune non-frequent: L1 = { b, c, j, m }
l Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
l Count the support of itemsets in C2

l Prune non-frequent: L2 = { {b,m} {b,c}  {c,m}  {c,j} }
l Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }
l Count the support of itemsets in C3

l Prune non-frequent: L3 = { {b,c,m} }

2/7/23

**
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A-Priori for All Frequent Itemsets

¢ One pass for each k (itemset size)

¢ Needs room in main memory to count 
each candidate k–tuple

¢ For typical market-basket data and reasonable support 
(e.g., 1%), k = 2 requires the most memory

¢ Many possible extensions:
l Lower the support s as itemset gets bigger
l Association rules with intervals: 

• For example: Men over 65 have 2 cars
l Association rules when items are in a taxonomy

• Bread, Butter → FruitJam
• BakedGoods, MilkProduct → PreservedGoods

2/7/23
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PCY (Park-Chen-Yu) Algorithm
¢ Observation: 

In pass 1 of a-priori, most memory is idle
l We store only individual item counts
l Can we use the idle memory to reduce 

memory required in pass 2?

¢ Pass 1 of PCY: In addition to item counts, maintain a 
hash table with as many buckets as fit in memory 
l Keep a count for each bucket into which 

pairs of items are hashed
• Just the count, not the pairs that hash to the bucket!

2/7/23



Frequent Itemsets 39

PCY Algorithm – First Pass  
FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items) :

hash the pair to a bucket;

add 1 to the count for that bucket;

¢ Pairs of items need to be generated from the input file; they 
are not present in the file

¢ We are not just interested in the presence 
of a pair, but we need to see whether it is present at least s
(support) times

2/7/23

New 
in 

PCY
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Observations about Buckets

¢ If a bucket contains a frequent pair, then 
the bucket is surely frequent
l But we cannot based on the hash alone to eliminate any non-

frequent member within this bucket

¢ Even without any frequent pair, a bucket 
can still be frequent (why?)

¢ But, for a bucket with total count less than s, 
none of its pairs can be frequent
l Pairs that hash to a non-frequent bucket can be eliminated from the 

candidate list (even if the pair consists of 2 frequent items)

¢ Pass 2:
Only count pairs that hash to frequent buckets

2/7/23
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PCY Algorithm – Between Passes
¢ Replace the buckets by a bit-vector:

l 1 means the bucket count exceeded the support s
(a frequent bucket ); 0 means it did not

¢ 4-byte integer counts are replaced by bits, so the bit-
vector requires 1/32 of memory in Pass 1

¢ Also, decide which items are frequent 
and list them for the second pass

2/7/23
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PCY Algorithm – Pass 2
¢ Count all pairs {i, j} that meet the 

conditions for being a candidate pair:
1. Both i and j are frequent items
2. The pair {i, j} hashes to a bucket whose bit in the bit vector is 1 

(i.e., frequent bucket)

¢ Both conditions are necessary for the 
pair to have a chance of being frequent

2/7/23
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Main-Memory: Picture of PCY

2/7/23
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Main-Memory Details
¢ Buckets require a few bytes each:

l Note: we don’t have to count past s
l #buckets is O(main-memory size)

¢ On second pass, a table of (item, item, count) triples is 
essential (we cannot use triangular matrix approach, 
why?)
l Thus, hash table must eliminate approx. 2/3 of the candidate pairs 

for PCY to beat A-Priori.

2/7/23
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Refinement: Multistage Algorithm

¢ Limit the number of candidates to be counted
l Remember: Memory is the bottleneck
l Still need to generate all the itemsets but we only want to 

count/keep track of the ones that are frequent

¢ Key idea: After Pass 1 of PCY, rehash only those pairs 
that qualify for Pass 2 of PCY
l i and j are frequent, and 
l {i, j} hashes to a frequent bucket from Pass 1

¢ On middle pass (i.e. the new Pass 2), fewer pairs 
contribute to buckets, so fewer false positives

¢ Requires 3 passes over the data

2/7/23
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Main-Memory: Multistage

2/7/23
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Multistage – Pass 3
¢ Count only those pairs {i, j} that satisfy these 

candidate pair conditions:
1. Both i and j are frequent items
2. Using the first hash function, the pair 

hashes to a bucket whose bit in the 
first bit-vector is 1.

3. Using the second hash function, the pair 
hashes to a bucket whose bit in the 
second bit-vector is 1.

2/7/23
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Important Points

1. The two hash functions have to be independent

2. We need to check both hashes on the third pass
l If not, we would end up counting pairs of frequent items that 

hashed first to an infrequent bucket (during Pass 1) but 
happened to hash to a frequent bucket during the new Pass 2.

2/7/23
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Refinement: Multihash
¢ Key idea: Use several independent hash tables on the first 

pass

¢ Risk: Halving the number of buckets doubles the average 
count
l We have to be sure most buckets will still not reach count s

¢ If so, we can get a benefit like multistage, 
but in only 2 passes

2/7/23
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Main-Memory: Multihash

2/7/23
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PCY: Extensions
¢ Either multistage or multihash can use more than two 

hash functions

¢ In multistage, there is a point of diminishing returns, since 
the bit-vectors eventually consume all of main memory

¢ For multihash, the bit-vectors occupy exactly what one 
PCY bitmap does, but given the constant amount of main 
memory to hold all hash tables, too many hash functions 
makes all counts > s, and thus, fails to eliminate any non-
frequent pairs !

2/7/23
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Frequent Itemsets in < 2 Passes
¢ A-Priori, PCY, etc., take k passes to find frequent itemsets 

of size k

¢ Can we use fewer passes?

¢ Use 2 or fewer passes for all sizes, 
but may miss some frequent itemsets
l Random sampling
l SON (Savasere, Omiecinski, and Navathe)
l Toivonen (see textbook [MMDS Ch6])
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Random Sampling (1)
¢ Take a random sample of the market baskets

¢ Run A-priori or one of its improvements
in main memory
l So we don’t pay for disk I/O each 

time we increase the size of itemsets
l MUST reduce support threshold 

proportionally to match the sample size

2/7/23
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Random Sampling (2)
¢ Optionally, verify that the candidate pairs are truly frequent 

in the entire data set by a second pass (avoid false 
positives)

¢ But you don’t catch sets frequent in the whole but not in 
the sample
l Smaller threshold, e.g., s/125, helps catch more truly frequent 

itemsets
• But requires more space

2/7/23
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SON Algorithm – (1)
¢ Repeatedly read small subsets of the baskets into main 

memory and run an in-memory algorithm to find all 
frequent itemsets
l Note: we are not sampling, but processing the entire file in 

memory-sized chunks

¢ An itemset becomes a candidate if it is found to be 
frequent in any one or more subsets of the baskets.

2/7/23
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SON Algorithm – (2)
¢ On a second pass, count all the candidate itemsets and 

determine which are frequent in the entire set

¢ Key idea: an itemset cannot be frequent in the entire set 
of baskets unless it is frequent in at least one subset.

2/7/23
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SON – Distributed Version
¢ SON lends itself to distributed/ parallel implementation, e.g.  

using MapReduce

¢ Baskets distributed among many nodes 
l Compute frequent itemsets at each node
l Distribute candidate itemsets to all nodes
l Accumulate the counts of all candidates

¢ Can be done with two MapReduce jobs: 
l First MapReduce job to produce the candidate itemsets
l Second MapReduce job to calculate the true frequent itemsets.

2/7/23
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SON: Map/Reduce
¢ Job 1: Find candidate itemsets

l Map?
l Reduce?

¢ Job 2: Find true frequent itemsets
l Map?
l Reduce?

2/7/23



Frequent Itemsets 60

SON: MapReduce Implementation

Mapper for Job 1
¢ Run A-Priori algorithm on 

the chunk using support 
threshold 𝑝𝑠

¢ Output the frequent 
itemsets for that chunk 
(F, c), where F is the key 
(itemset) and c is count 
(or proportion)

Reducer for Job 1
¢ Output the candidate 

itemsets to be verified in 
the Job 2

¢ Given (F,c), discard c and 
output all candidate 
itemsets F’s

60
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SON: MapReduce Implementation (cont’d)

Mapper for Job 2
¢ For all the candidate 

itemsets produced by Job 1, 
count the frequency in local 
chunk

Reducer for Job 2

61

¢ Aggregate the o/p of the 
Mapper of Job 2 and sum 
the count to get the 
frequency of each candidate 
itemsets across the entire 
input file

¢ Filter out the itemsets with 
support smaller than s


