
Frequent Itemsets 1

IERG4300
Web-Scale Information Analytics

Frequent Itemsets and
Association Rule Mining

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

Frequent Itemsets 2

Acknowledgements
¢ The slides used in this chapter are adapted from:

l CS246 Mining Massive Data-sets, by Jure Leskovec, Stanford
University.

with the author’s permission. All copyrights belong to the
original author of the material.

Frequent Itemsets 3

Association Rule Discovery

Supermarket shelf management – Market-basket model:
¢ Goal: Identify items that are bought together by sufficiently

many customers
¢ Approach: Process the sales data collected with barcode

scanners to find dependencies among items
¢ A classic rule:

l If one buys diaper and milk, then he is likely to buy beer
l Don’t be surprised if you find six-packs next to diapers!

TID Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

Frequent Itemsets 4

The Market-Basket Model

¢ A large set of items
l e.g., things sold in a

supermarket

¢ A large set of baskets,
each is a small subset of items
l e.g., the things one customer buys on one day

¢ A general many-many mapping (association) between
two kinds of things
l But we ask about connections among “items”,

not “baskets”

2/7/23

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Frequent Itemsets 5

Association Rules: Approach
¢ Given a set of baskets

¢ Want to discover
association rules
l People who bought

{x,y,z} tend to buy {v,w}
• Amazon!

¢ 2-step approach:
l 1) Find frequent itemsets
l 2) Generate association rules

2/7/23

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Output:

Frequent Itemsets 6

Applications – (1)

¢ Items = products; Baskets = sets of products someone
bought in one trip to the store

¢ Real market baskets: Chain stores keep TBs of data
about what customers buy together
l Tells how typical customers navigate stores, lets them position

tempting items
l Suggests tie-in “tricks”, e.g., run sale on diapers and raise the price

of beer
l High support needed, or no $$’s

¢ Amazon’s people who bought X also bought Y

2/7/23

Frequent Itemsets 7

Applications – (2)

¢ Baskets = sentences; Items = documents containing
those sentences
l Items that appear together too often could represent plagiarism
l Notice items do not have to be “in” baskets

¢ Baskets = patients; Items = drugs & side-effects
l Has been used to detect combinations

of drugs that result in particular side-effects
l But requires extension: Absence of an item

needs to be observed as well as presence

2/7/23 7

First: Define
Frequent itemsets
Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs
Apriori algorithm
PCY algorithm + refinements

8
2/7/23

Frequent Itemsets 9

Frequent Itemsets
¢ Simplest question: Find sets of items that appear

together “frequently” in baskets

¢ Support for itemset I: Number of baskets containing all
items in I
l Often expressed as a fraction

of the total number of baskets

¢ Given a support threshold s,
then sets of items that appear
in at least s baskets are called
frequent itemsets

2/7/23 9

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of
{Beer, Bread} = 2

Frequent Itemsets 10

Example: Frequent Itemsets

¢ Items = {milk, coke, pepsi, beer, juice}

¢ Minimum support = 3 baskets
B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, b} B4= {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

¢ Frequent itemsets: {m}, {c}, {b}, {j},

2/7/23

, {b,c} , {c,j}.{m,b}

Frequent Itemsets 11

Association Rules
¢ Association Rules:

If-then rules about the contents of baskets

¢ {i1, i2,…,ik} → j means: “if a basket contains all of i1,…,ik
then it is likely to contain j”

¢ In practice there are many rules, want to find
significant/interesting ones!

¢ Confidence of this association rule is the probability of j
given I = {i1,…,ik}

2/7/23

conf(I→ j) = support(I ∪ j)
support(I)

= Pr[j | I]

*Note: support(I ∪ j) = # (or %) of baskets contain BOTH I AND j

Frequent Itemsets 12

Interesting Association Rules

¢ Not all high-confidence rules are interesting
l The rule X → milk may have high confidence for many itemsets X,

because milk is just purchased very often (independent of X) and
the confidence will be high

¢ Interest of an association rule I → j:
difference between its confidence and the fraction of
baskets that contain j

l Interesting rules are those with
high positive or negative interest values

2/7/23

Interest(I→ j) = conf(I→ j)− Pr[j]
 = Pr[j | I]− Pr[j]

Frequent Itemsets 13

Example: Confidence and Interest
B1 = {m, c, b} B2 = {m, p, j}
B3 = {m, b} B4= {c, j}
B5 = {m, p, b} B6 = {m, c, b, j}
B7 = {c, b, j} B8 = {b, c}

¢ Association rule: {m, b} →c
l Confidence = 2/4 = 0.5
l Interest = |0.5 – 5/8| = 1/8

• Item c appears in 5/8 of the baskets
• Rule is not very interesting!

2/7/23

Frequent Itemsets 14

Finding Association Rules
¢ Problem: Find all association rules with support ≥s

and confidence ≥c
l Note: Support of an association rule is the support of the set of

items on the left side

¢ Hard part: Finding the frequent itemsets!
l If {i1, i2,…, ik} → j has high support and confidence,

then both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”

2/7/23

)support(
)support()conf(

I
jIjI È

=®

Frequent Itemsets 15

Mining Association Rules
¢ Step 1: Find all frequent itemsets I

l (we will explain this next)

¢ Step 2: Rule generation
l For every subset A of I, generate a rule A → I \ A

• Since I is frequent, A is also frequent
• Variant 1: Single pass to compute the rule confidence

• conf(A,B→C,D) = supp(A,B,C,D)/supp(A,B)
• Variant 2:

• Observation**: If A,B,C→D is below confidence, so is A,B→C,D
• Can generate “bigger” rules from smaller ones!

l Output the rules above the confidence threshold

2/7/23

Frequent Itemsets 16

Mining Association Rules (cont’d)
¢ Claim: If A,B,C→D is below confidence, so is A,B→C,D

Why ?

Since Supp(ABC) =< Supp(AB)

Therefore:

Conf.(ABC->D) = Supp(ABCD)/ Supp(ABC) >= Supp(ABCD)/Supp(AB) = Conf(AB->CD)

Thus,

IF Conf(AB->CD) >= Threshold THEN Conf(ABC->D) also >= threshold ;

Equivalently,

IF Conf(ABC->D) < Threshold then Conf(AB->CD) is also below threshold

This means we can first check Conf(AB->CD) if it is above threshold, we can
simply generate additional rules, e.g. ABC->D, ABD->C.

=> Can generate “bigger” rules from smaller ones!

Frequent Itemsets 17

Example
B1 = {m, a, b} B2 = {m, p, j}
B3 = {m, a, b, n} B4= {a, j}
B5 = {m, p, b} B6 = {m,a, b, j}
B7 = {a, b, j} B8 = {b, a}

¢ Min support s=3, confidence c=0.75

¢ 1) Frequent itemsets:
l {b,m} {a,b} {a,m} {a,j} {m,a,b}

¢ 2) Generate rules:
l b→m: c=4/6 b→a: c=5/6 b,a→m: c=3/5
l m→b: c=4/5 … b,m→a: c=3/4
l b→a,m: c=3/6

2/7/23

Frequent Itemsets 18

A Compact Way to store/track
Frequent Itemsets

You only need to store the so-called:

Maximal Frequent itemsets:

Definition: a Frequent set for which NO immediate superset is
frequent

Nice Properties:
All subsets of a Maximal Frequent itemset are frequent

AND
Every Frequent itemset must be a subset of some Maximal

Frequent itemset

=> By enumerating ALL subsets of all Maximal Frequent Itemsets, you
will NOT miss any Frequent Itemset ! Also, every subset you got is a
Frequent Itemset !

2/7/23 18

Frequent Itemsets 19

Example: Maximal Frequent Itemset

Count Maximal (s=3)

A 4 No

B 5 No

C 3 No

AB 4 Yes

AC 2 No

BC 3 Yes

ABC 2 No

2/7/23

Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Finding Frequent Itemsets

Frequent Itemsets 21

Itemsets: Computation Model

¢ Back to finding frequent itemsets

¢ Typically, data is kept in flat files
rather than in a database system:
l Stored on disk
l Stored basket-by-basket
l Baskets are small but we have

many baskets and many items
• Expand baskets into pairs, triples, etc.

as you read baskets
• Use k nested loops to generate all

sets of size k

2/7/23

Item
Item
Item
Item
Item
Item
Item

Item

Item
Item
Item

Item

Etc.

Items are positive
integers, and boundaries
between baskets are –1.

Note: We want to find frequent itemsets. To find
them, we have to count them. To count them, we
have to generate them.

Frequent Itemsets 22

Computation Model
¢ The true cost of mining disk-resident data is usually the

number of disk I/O’s

¢ In practice, association-rule algorithms read the data in
passes – all baskets read in turn

¢ We measure the cost by the number of passes an
algorithm makes over the data

2/7/23

Frequent Itemsets 23

Main-Memory Bottleneck
¢ For many frequent-itemset algorithms,

main-memory is the critical resource
l As we read baskets, we need to count

something, e.g., occurrences of pairs of items
l The number of different things we can count

is limited by main memory
l Swapping counts in/out is a disaster (why?)

2/7/23

Frequent Itemsets 24

Finding Frequent Pairs

¢ The hardest problem often turns out to be finding the
frequent pairs of items {i1, i2}
l Why? Often frequent pairs are common, frequent triples are rare

• Why? Probability of being frequent drops exponentially with size;
number of sets grows more slowly with size.

¢ Let’s first concentrate on pairs, then extend to larger sets

¢ The approach:
l We always need to generate all the itemsets
l But we would only like to count/keep track of those itemsets that in

the end turn out to be frequent

2/7/23

Frequent Itemsets 25

Naïve Algorithm

¢ Naïve approach to finding frequent pairs

¢ Read file once, counting in main memory
the occurrences of each pair:
l From each basket of n items, generate its

n(n-1)/2 pairs by two nested loops

¢ Fails if (#items)2 exceeds main memory
l Remember: #items can be

100K (Wal-Mart) or 10B (Web pages)
• Suppose 105 items, counts are 4-byte integers
• Number of pairs of items: 105(105-1)/2 = 5*109

• Therefore, 2*1010 (20 gigabytes) of memory needed

2/7/23

Frequent Itemsets 26

Counting Pairs in Memory

Two Approaches:

¢ Approach 1: Count all pairs using a matrix

¢ Approach 2: Keep a table of triples [i, j, c] = “the count of
the pair of items {i, j} is c.”
l If integers and item ids are 4 bytes, we need approximately 12

bytes for pairs with count > 0
l Plus some additional overhead for the hashtable

Note:

¢ Approach 1 only requires 4 bytes per pair

¢ Approach 2 uses 12 bytes per pair
(but only for pairs with count > 0)

2/7/23

Frequent Itemsets 27

Comparing the 2 Approaches

2/7/23

4 bytes per pair

Triangular Matrix Triples

12 bytes per
occurring pair

Frequent Itemsets 28

Triangular Matrix Approach

Triangular Matrix Approach
l n = total number items
l Count pair of items {i, j} only if i<j

¢ Keep pair counts in lexicographic order:
l {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

¢ Pair {i, j} is at position (i –1)(n– i/2) + j –1

¢ Total number of pairs n(n –1)/2; total bytes= 2n2

¢ Triangular Matrix requires 4 bytes per pair

¢ Approach 2 uses 12 bytes per pair
(but only for pairs with count > 0)
l Beats triangular matrix if less than 1/3 of

possible pairs actually occur
2/7/23

The A-Priori Algorithm

Frequent Itemsets 30

A-Priori Algorithm – (1)
¢ A two-pass approach called

a-priori limits the need for
main memory

¢ Key idea: monotonicity
l If a set of items I appears at

least s times, so does every subset J of I.

¢ Contrapositive for pairs:
If item i does not appear in s baskets, then no pair
including i can appear in s baskets

2/7/23

Frequent Itemsets 31

A-Priori Algorithm – (2)

¢ Pass 1: Read baskets and count in main memory the
occurrences of each individual item

• Requires only memory proportional to #items, usually enough
memory even for 1 billon (= n) different types of items !

¢ Items that appear >= s times are the frequent items
¢ Pass 2: Read baskets again and count in main memory

only those pairs where both elements are frequent (from
Pass 1)
l Requires memory proportional to square of frequent items only

(for counts)
l Plus a list of the frequent items (so you know what must be

counted)

2/7/23

Frequent Itemsets 32

Main-Memory: Picture of A-Priori

2/7/23

Item counts

Pass 1 Pass 2

Frequent items

M
ai

n
m

em
or

y

Counts of
pairs of frequent
items (candidate

pairs)

Frequent Itemsets 33

Detail for A-Priori

¢ You can use the triangular
matrix method with:

n = number of frequent items
l May save space compared with

storing triples

¢ Trick: re-number frequent
items 1,2,… and keep a table
relating new numbers to
original item numbers

2/7/23

Item counts

Pass 1 Pass 2

Counts of pairs
of frequent

items

Frequent
items

Old
item
#s

M
ai

n
m

em
or

y

Counts of
pairs of

frequent items

Frequent Itemsets 34

Frequent Triples, Etc.
¢ For each k, we construct two sets of

k-tuples (sets of size k):
l Ck = candidate k-tuples = those that might be frequent sets

(support > s) based on information from the pass for k–1
l Lk = the set of truly frequent k-tuples

2/7/23

C1 L1 C2 L2 C3Filter Filter ConstructConstruct

All
items

Count
the items

All pairs
of items
from L1

Count
the pairs

To be
explained

Frequent Itemsets 35

Example
¢ Hypothetical steps of the A-Priori algorithm

l C1 = { {b} {c} {j} {m} {n} {p} }
l Count the support of itemsets in C1

l Prune non-frequent: L1 = { b, c, j, m }
l Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
l Count the support of itemsets in C2

l Prune non-frequent: L2 = { {b,m} {b,c} {c,m} {c,j} }
l Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }
l Count the support of itemsets in C3

l Prune non-frequent: L3 = { {b,c,m} }

2/7/23

**

Frequent Itemsets 36

A-Priori for All Frequent Itemsets

¢ One pass for each k (itemset size)

¢ Needs room in main memory to count
each candidate k–tuple

¢ For typical market-basket data and reasonable support
(e.g., 1%), k = 2 requires the most memory

¢ Many possible extensions:
l Lower the support s as itemset gets bigger
l Association rules with intervals:

• For example: Men over 65 have 2 cars
l Association rules when items are in a taxonomy

• Bread, Butter → FruitJam
• BakedGoods, MilkProduct → PreservedGoods

2/7/23

PCY (Park-Chen-Yu) Algorithm

Frequent Itemsets 38

PCY (Park-Chen-Yu) Algorithm
¢ Observation:

In pass 1 of a-priori, most memory is idle
l We store only individual item counts
l Can we use the idle memory to reduce

memory required in pass 2?

¢ Pass 1 of PCY: In addition to item counts, maintain a
hash table with as many buckets as fit in memory
l Keep a count for each bucket into which

pairs of items are hashed
• Just the count, not the pairs that hash to the bucket!

2/7/23

Frequent Itemsets 39

PCY Algorithm – First Pass
FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items) :

hash the pair to a bucket;

add 1 to the count for that bucket;

¢ Pairs of items need to be generated from the input file; they
are not present in the file

¢ We are not just interested in the presence
of a pair, but we need to see whether it is present at least s
(support) times

2/7/23

New
in

PCY

Frequent Itemsets 40

Observations about Buckets

¢ If a bucket contains a frequent pair, then
the bucket is surely frequent
l But we cannot based on the hash alone to eliminate any non-

frequent member within this bucket

¢ Even without any frequent pair, a bucket
can still be frequent (why?)

¢ But, for a bucket with total count less than s,
none of its pairs can be frequent
l Pairs that hash to a non-frequent bucket can be eliminated from the

candidate list (even if the pair consists of 2 frequent items)

¢ Pass 2:
Only count pairs that hash to frequent buckets

2/7/23

Frequent Itemsets 41

PCY Algorithm – Between Passes
¢ Replace the buckets by a bit-vector:

l 1 means the bucket count exceeded the support s
(a frequent bucket); 0 means it did not

¢ 4-byte integer counts are replaced by bits, so the bit-
vector requires 1/32 of memory in Pass 1

¢ Also, decide which items are frequent
and list them for the second pass

2/7/23

Frequent Itemsets 42

PCY Algorithm – Pass 2
¢ Count all pairs {i, j} that meet the

conditions for being a candidate pair:
1. Both i and j are frequent items
2. The pair {i, j} hashes to a bucket whose bit in the bit vector is 1

(i.e., frequent bucket)

¢ Both conditions are necessary for the
pair to have a chance of being frequent

2/7/23

Frequent Itemsets 43

Main-Memory: Picture of PCY

2/7/23

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Hash table
for pairs

M
ai

n
m

em
or

y

Counts of
candidate

pairs

Frequent Itemsets 44

Main-Memory Details
¢ Buckets require a few bytes each:

l Note: we don’t have to count past s
l #buckets is O(main-memory size)

¢ On second pass, a table of (item, item, count) triples is
essential (we cannot use triangular matrix approach,
why?)
l Thus, hash table must eliminate approx. 2/3 of the candidate pairs

for PCY to beat A-Priori.

2/7/23

Frequent Itemsets 45

Refinement: Multistage Algorithm

¢ Limit the number of candidates to be counted
l Remember: Memory is the bottleneck
l Still need to generate all the itemsets but we only want to

count/keep track of the ones that are frequent

¢ Key idea: After Pass 1 of PCY, rehash only those pairs
that qualify for Pass 2 of PCY
l i and j are frequent, and
l {i, j} hashes to a frequent bucket from Pass 1

¢ On middle pass (i.e. the new Pass 2), fewer pairs
contribute to buckets, so fewer false positives

¢ Requires 3 passes over the data

2/7/23

Frequent Itemsets 46

Main-Memory: Multistage

2/7/23

First
hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of
candidate

pairs

Pass 1 Pass 2 Pass 3

Count items
Hash pairs {i,j}

Hash pairs {i,j}
into Hash2 iff:
i,j are frequent,

&& {i,j} hashes to
freq. bucket in B1

Count pairs {i,j} iff:
i,j are frequent,

&& {i,j} hashes to
freq. bucket in B1
&& {i,j} hashes to
freq. bucket in B2

First
hash table Second

hash table Counts of
candidate

pairs

M
ai

n
m

em
or

y

Frequent Itemsets 47

Multistage – Pass 3
¢ Count only those pairs {i, j} that satisfy these

candidate pair conditions:
1. Both i and j are frequent items
2. Using the first hash function, the pair

hashes to a bucket whose bit in the
first bit-vector is 1.

3. Using the second hash function, the pair
hashes to a bucket whose bit in the
second bit-vector is 1.

2/7/23

Frequent Itemsets 48

Important Points

1. The two hash functions have to be independent

2. We need to check both hashes on the third pass
l If not, we would end up counting pairs of frequent items that

hashed first to an infrequent bucket (during Pass 1) but
happened to hash to a frequent bucket during the new Pass 2.

2/7/23

Frequent Itemsets 49

Refinement: Multihash
¢ Key idea: Use several independent hash tables on the first

pass

¢ Risk: Halving the number of buckets doubles the average
count
l We have to be sure most buckets will still not reach count s

¢ If so, we can get a benefit like multistage,
but in only 2 passes

2/7/23

Frequent Itemsets 50

Main-Memory: Multihash

2/7/23

First hash
table

Second
hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of
candidate

pairs

Pass 1 Pass 2

First
hash table

Second
hash table

Counts of
candidate

pairs

M
ai

n
m

em
or

y

Frequent Itemsets 51

PCY: Extensions
¢ Either multistage or multihash can use more than two

hash functions

¢ In multistage, there is a point of diminishing returns, since
the bit-vectors eventually consume all of main memory

¢ For multihash, the bit-vectors occupy exactly what one
PCY bitmap does, but given the constant amount of main
memory to hold all hash tables, too many hash functions
makes all counts > s, and thus, fails to eliminate any non-
frequent pairs !

2/7/23

Frequent Itemsets
in < 2 Passes

Frequent Itemsets 53

Frequent Itemsets in < 2 Passes
¢ A-Priori, PCY, etc., take k passes to find frequent itemsets

of size k

¢ Can we use fewer passes?

¢ Use 2 or fewer passes for all sizes,
but may miss some frequent itemsets
l Random sampling
l SON (Savasere, Omiecinski, and Navathe)
l Toivonen (see textbook [MMDS Ch6])

Frequent Itemsets 54

Random Sampling (1)
¢ Take a random sample of the market baskets

¢ Run A-priori or one of its improvements
in main memory
l So we don’t pay for disk I/O each

time we increase the size of itemsets
l MUST reduce support threshold

proportionally to match the sample size

2/7/23

Copy of
sample
baskets

Space
for

counts

M
ai

n
m

em
or

y

Frequent Itemsets 55

Random Sampling (2)
¢ Optionally, verify that the candidate pairs are truly frequent

in the entire data set by a second pass (avoid false
positives)

¢ But you don’t catch sets frequent in the whole but not in
the sample
l Smaller threshold, e.g., s/125, helps catch more truly frequent

itemsets
• But requires more space

2/7/23

Frequent Itemsets 56

SON Algorithm – (1)
¢ Repeatedly read small subsets of the baskets into main

memory and run an in-memory algorithm to find all
frequent itemsets
l Note: we are not sampling, but processing the entire file in

memory-sized chunks

¢ An itemset becomes a candidate if it is found to be
frequent in any one or more subsets of the baskets.

2/7/23

Frequent Itemsets 57

SON Algorithm – (2)
¢ On a second pass, count all the candidate itemsets and

determine which are frequent in the entire set

¢ Key idea: an itemset cannot be frequent in the entire set
of baskets unless it is frequent in at least one subset.

2/7/23

Frequent Itemsets 58

SON – Distributed Version
¢ SON lends itself to distributed/ parallel implementation, e.g.

using MapReduce

¢ Baskets distributed among many nodes
l Compute frequent itemsets at each node
l Distribute candidate itemsets to all nodes
l Accumulate the counts of all candidates

¢ Can be done with two MapReduce jobs:
l First MapReduce job to produce the candidate itemsets
l Second MapReduce job to calculate the true frequent itemsets.

2/7/23

Frequent Itemsets 59

SON: Map/Reduce
¢ Job 1: Find candidate itemsets

l Map?
l Reduce?

¢ Job 2: Find true frequent itemsets
l Map?
l Reduce?

2/7/23

Frequent Itemsets 60

SON: MapReduce Implementation

Mapper for Job 1
¢ Run A-Priori algorithm on

the chunk using support
threshold 𝑝𝑠

¢ Output the frequent
itemsets for that chunk
(F, c), where F is the key
(itemset) and c is count
(or proportion)

Reducer for Job 1
¢ Output the candidate

itemsets to be verified in
the Job 2

¢ Given (F,c), discard c and
output all candidate
itemsets F’s

60

Frequent Itemsets 61

SON: MapReduce Implementation (cont’d)

Mapper for Job 2
¢ For all the candidate

itemsets produced by Job 1,
count the frequency in local
chunk

Reducer for Job 2

61

¢ Aggregate the o/p of the
Mapper of Job 2 and sum
the count to get the
frequency of each candidate
itemsets across the entire
input file

¢ Filter out the itemsets with
support smaller than s

